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Abstract
An Ironclad App lets a user securely transmit her data to
a remote machine with the guarantee that every instruc-
tion executed on that machine adheres to a formal abstract
specification of the app’s behavior. This does more than
eliminate implementation vulnerabilities such as buffer
overflows, parsing errors, or data leaks; it tells the user
exactly how the app will behave at all times. We provide
these guarantees via complete, low-level software verifi-
cation. We then use cryptography and secure hardware
to enable secure channels from the verified software to
remote users. To achieve such complete verification, we
developed a set of new and modified tools, a collection
of techniques and engineering disciplines, and a method-
ology focused on rapid development of verified systems
software. We describe our methodology, formal results,
and lessons we learned from building a full stack of ver-
ified software. That software includes a verified kernel;
verified drivers; verified system and crypto libraries in-
cluding SHA, HMAC, and RSA; and four Ironclad Apps.

1 Introduction
Today, when Alice submits her personal data to a remote
service, she has little assurance that her data will remain
secure. At best, she has vague legal guarantees provided
by the service’s privacy policy and the hope that the owner
will follow industry best practices. Even then, a vulnera-
ble OS, library, or application may undermine the service
provider’s best intentions [51].

In theory, complete formal verification of the service’s
code would replace this tenuous position with the strong
mathematical guarantee that the service precisely matches
Alice’s formally specified security expectations. Unfortu-
nately, while software verification provides strong guar-
antees [4, 6, 8, 17, 39], the cost is often high [25, 35, 36];
e.g., seL4 took over 22 person-years of effort to verify a
microkernel. Some strong guarantees have been obtained
in much less time, but those guarantees depend on unveri-
fied lower-level code. For example, past work produced
a verified TLS implementation [9] and a proof of cor-
rectness for RSA-OAEP [7]. In both cases, though, they
assumed the crypto libraries, their runtimes (e.g., .NET),
and the OS were correct.

In contrast, we aim to create Ironclad Apps that are ver-
ifiably end-to-end secure, meaning that: (1) The verifica-
tion covers all code that executes on the server, not just
the app but also the OS, libraries, and drivers. Thus, it

does not assume that any piece of server software is cor-
rect. (2) The proof covers the assembly code that gets
executed, not the high-level language in which the app is
written. Thus, it assumes that the hardware is correct, but
assumes nothing about the correctness of the compiler or
runtime. (3) The verification demonstrates remote equiv-
alence: that to a remote party the app’s implementation is
indistinguishable from the app’s high-level abstract state
machine.

Verifiable remote equivalence dictates the behavior of
the entire system in every possible situation. Thus, this
approach provides stronger guarantees than type checkers
or tools that look for classes of bugs such as buffer over-
flows or bounds errors. Our proof of remote equivalence
involves proving properties of both functional correctness
and information flow; we do the latter by proving nonin-
terference, a relationship between two runs of the same
code with different inputs.

We then show how remote equivalence can be strength-
ened to secure remote equivalence via Trusted Comput-
ing [3, 53]. Specifically, the app verifiably uses secure
hardware, including a TPM [63], to convince a remote
client that its public key corresponds to a private key
known only to the app. The client uses the public key
to establish a secure channel, thereby achieving security
equivalent to direct communication with the abstractly
specified app [30].

Another goal of our work is to make it feasible to build
Ironclad Apps with modest developer effort. Previous ef-
forts, such as seL4 [35] or VCC [13], took tens of person-
years to verify one software layer, so verifying an entire
stack using these techniques may be prohibitive. To re-
duce developer effort, we use state-of-the-art tools for au-
tomated software verification, such as Dafny [39], Boo-
gie [4], and Z3 [17]. These tools need much less guidance
from developers than interactive proof assistants used in
previous work [35, 52].

However, many in the verification community worry
that automated verification cannot scale to large software
and that the tools’ heuristics inevitably lead to unstable
verification results. Indeed, we encountered these chal-
lenges, and dealt with them in multiple ways: via two
new tools (§3.4); via modifications to existing verification
tools to support incremental verification, opaque func-
tions, and automatic requirement propagation; via soft-
ware engineering disciplines like premium functions and
idiomatic specification; via a nonlinear math library that



lets us suppress instability-inducing arithmetic heuristics;
and via provably correct libraries for performing crypto
operations and manipulating arrays of bits, bytes, and
words. All these contributions support stable, automated,
large-scale, end-to-end verification of systems software.

To demonstrate the feasibility of our approach, we built
four Ironclad Apps, each useful as a standalone service
but nevertheless compactly specifiable. For instance, our
Notary app securely assigns logical timestamps to docu-
ments so they can be conclusively ordered. Our other
three apps are a password hasher, a multi-user trusted
counter [40], and a differentially-private database [19].

We wrote nearly all of the code from scratch, includ-
ing the apps, libraries, and drivers. For the OS, we used
the Verve microkernel [65], modified to support secure
hardware and the Dafny language. For our four apps col-
lectively we wrote about 6K lines of implementation and
30K lines of proof annotations. Simple benchmarks expe-
rience negligible slowdown, but unoptimized asymmetric
crypto workloads slow down up to two orders of magni-
tude.

Since we prove that our apps conform to their specifi-
cations, we want these specs to be small. Currently, the
total spec size for all our apps is 3,546 lines, satisfying
our goal of a small trusted computing base (TCB).

2 Goals and Assumptions
Here we summarize Ironclad’s goals, non-goals, and
threat model. As a running example, we use our No-
tary app, which implements an abstract Notary state ma-
chine. This machine’s state is an asymmetric key pair
and a monotonic counter, and it signs statements assigning
counter values to hashes. The crypto lets a user securely
communicate with it even over an untrusted network.

2.1 Goals

Remote equivalence. Any remote party, communicat-
ing with the Ironclad App over an untrusted network,
should receive the same sequence of messages as she
would have received if she were communicating with
the app’s abstract state machine over an untrusted net-
work. For example, the Notary app will never roll back its
counter, leak its private key, sign anything other than no-
tarizations, compute signatures incorrectly, or be suscep-
tible to buffer overflows, integer overflows, or any other
implementation-level vulnerabilities.
Secure channel. A remote user can establish a secure
channel to the app. Since this protects the user’s commu-
nication from the untrusted network, the remote equiva-
lence guarantee leads to security commensurate with ac-
tual equivalence. For example, the Notary’s spec says it
computes its key pair using secure randomness, then ob-
tains an attestation binding the public key and the app’s
code to a secure platform. This attestation convinces a re-

mote user that a notarization signed with the correspond-
ing private key was generated by the Notary’s code, which
is equivalent to the abstract Notary state machine. Note
that not all messages need to use the secure channel; e.g.,
hashes sent to the Notary are not confidential, so the app
does not expect them to be encrypted.
Completeness. Every software component must be ei-
ther verified secure or run in a verified-secure sandbox;
our current system always uses the former option. The
assurance should cover the entire system as a coherent
whole, so security cannot be undermined by incorrect as-
sumptions about how components interact. Such gaps
introduced bugs in previous verification efforts [65].
Low-level verification. Since complex tools like com-
pilers may introduce bugs (a recent study found 325 de-
fects in 11 C compilers [66]), we aim to verify the actual
instructions that will execute rather than high-level code.
Verifying assembly also has a potential performance ben-
efit: We can hand-tune our assembly code without fear of
introducing bugs that violate our guarantees.
Rapid development by systems programmers. To push
verification towards commercial practicality, we need to
improve the scale and functionality of verification tools
to support large, real-world programs. This means that
non-expert developers should be able to rapidly write and
efficiently maintain verified code.

2.2 Non-goals

Compatibility. Ideally, we would verify existing code
written in standard languages. However given the chal-
lenges previous efforts have faced [13], we choose to fo-
cus on fresh code written in a language designed to sup-
port verification. If we cannot achieve the goals above in
such a setting, then we certainly cannot achieve it in the
challenging legacy setting.
Performance. Our primary goal is to demonstrate the fea-
sibility of verifying an entire software stack. Hence, we
focus on single-core machines, poll for network packets
rather than using interrupts, and choose algorithms that
facilitate proofs of correctness rather than performance.

However, verification gives us a strong safety net with
which to perform arbitrarily aggressive optimizations,
since we can count on our tools to catch any errors that
might be introduced. We exploited this repeatedly.

2.3 Threat model and assumptions

Ironclad provides security against software-based attack-
ers, who may run arbitrary software on the machine before
the Ironclad App executes and after it terminates. The ad-
versary may compromise the platform’s firmware, BIOS,
and peripheral devices, such as the network card. We as-
sume the CPU, memory, and chipset are correct, and the
attacker does not mount physical attacks, such as electri-
cally probing the memory bus.
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Figure 1: Methodology Overview. Rounded rectangles repre-
sent tools; regular rectangles represent artifacts. Trusted com-
ponents are shaded.

We focus on privacy and integrity; we do not prove live-
ness, so attacks or bugs may result in denial of service.
Our hardware model is currently inadequate to prove the
absence of side channels due to cache or timing effects.

We assume the platform has secure hardware support,
specifically a Trusted Platform Module (TPM). Deployed
on over 500 million computers [64], the TPM provides a
hardware-based root of trust [3, 53, 63]. That is, it records
information about all software executed on the platform
during a boot cycle in a way that can be securely reported,
via an attestation protocol, to a remote party. The TPM
maintains records about the current boot cycle in the form
of hash chains maintained in volatile Platform Configura-
tion Registers (PCRs). Software can add information to
the PCRs via an extend operation. This operation updates
a PCR to the hash of its previous value concatenated with
the new information. The TPM also has a private RSA
key that never leaves the device and can be used to attest
to the platform’s current state by signing the PCR values.
The TPM’s manufacturer certifies that the corresponding
public key is held by a real hardware TPM, preventing
impersonation by software. Finally, the TPM provides ac-
cess to a stream of secure random bytes.

3 The Ironclad Methodology
This section describes our methodology for verifying
Ironclad Apps are secure and for efficiently building them.

3.1 Overview

Previous verification efforts required >20 person-years of
effort to develop relatively small verified software. Since
we aim to perform low-level, full-system verification with
modest effort, our methodology (Fig. 1) differs from pre-
vious efforts in significant ways.

With Ironclad, we use a verification stack based on
Floyd-Hoare reasoning (§3.2) to prove the functional cor-
rectness of our code. We write both our specifications
(§3.3) and code (§3.4) in Dafny [39], a remarkably us-
able high-level language designed to facilitate verifica-
tion. Unlike tools used in previous efforts, Dafny supports
automated verification via the Z3 [17] SMT solver, so the
tool often automatically fills in low-level proof details.

Given correct Dafny code, we built automated tools to
translate our code to BoogieX86 [65], a verifiable assem-
bly language (§3.4). The entire system is verified at the
assembly level using the Boogie verifier [4], so any bugs
in Dafny or in the compiler will be caught at this stage.

At every stage, we use and extend existing tools and
build new ones to support rapid development of verified
code (§3.5), using techniques like real-time feedback in
developer UIs and multi-level verification result caching.

Finally, since many security properties cannot be ex-
pressed via functional correctness, we develop techniques
for verifying relational properties of our code (§3.6).

If all verification checks pass, a simple trusted as-
sembler and linker produces the machine code that actu-
ally runs. We run that code using the platform’s secure
late-launch feature (§6.1), which puts the platform into a
known-good state, records a hash of the code in the TPM
(§2.3), then starts executing verified code. These steps al-
low remote parties to verify that Ironclad code was indeed
properly loaded, and they prevent any code that runs be-
fore Ironclad, including the boot loader, from interfering
with its execution.

3.2 Background: Floyd-Hoare verification

We verify Ironclad Apps using Floyd-Hoare reason-
ing [21, 31]. In this approach, programs are annotated
with assertions about program state, and the verification
process proves that the assertions will be valid when the
program is run, for all possible inputs. As a simple exam-
ple, the following program is annotated with an assertion
about the program state at the end of a method (a “post-
condition”), saying that the method output O must be an
even number:
method Main(S, I) returns(O)

ensures even(O);
{ O := (S + S) + (I + I); }

A tool like Dafny or Boogie can easily and automatically
verify that the postcondition above holds for all possible
inputs S and I.

For a long-running program with multiple outputs, we
can specify a restriction on all of the program’s outputs
by annotating its output method with a precondition. For
instance, writing:
method WriteOutput(O) // Trusted output

requires even(O); // method

ensures that the verifier will reject code unless, like the
following, it can be proven to only output even numbers:
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method Main() {
var count := 0;
while(true) invariant even(count) {
count := count + 2;
WriteOutput(count);

} }

Boogie and Dafny are sound, i.e., they will never ap-
prove an incorrect program, so they cannot be complete,
i.e., they will sometimes fail to automatically recognize
valid programs as correct. Thus, they typically require
many preconditions, postconditions, and loop invariants
inside the program to help them complete the verifica-
tion, in addition to the preconditions and postconditions
used to write the trusted specifications. The loop invari-
ant invariant even(count) in the example above
illustrates this: it is not part of the trusted specification,
but instead serves as a hint to the verification tool.

By itself, Floyd-Hoare reasoning proves safety proper-
ties but not liveness properties. For example, a postcondi-
tion establishes a property of the state upon method exit,
but the method may fail to terminate. We have not proven
liveness for Ironclad Apps.

3.3 Writing trustworthy specifications

To build Ironclad Apps, we write two main types of spec-
ifications: hardware and apps. For hardware specs, since
we aim for low-level verification, we write a specification
for each of the ∼56 assembly instructions our implemen-
tation will use. An instruction’s spec describes its precon-
ditions and its effects on the system. For example, Add
ensures that the sum of the input registers is written to the
destination register, and requires that the input values not
cause the sum to overflow.

For app specs, we write abstract descriptions of desired
app behavior. These are written modularly in terms of
lower-level library specs. For example, the spec for the
Notary describes how the app’s state machine advances
and the outputs permitted in each state; one possible out-
put is a signed message which is defined in terms of our
spec for RSA signing.

The verification process removes all implementation
code from the TCB by proving that it meets its high-
level spec given the low-level machine spec. However, the
specs themselves are part of the TCB, so it is crucial that
they be worthy of users’ trust. To this end, we use spec-
first design, idiomatic specification, and spec reviews.
Spec-first design. To encourage spec quality, we write
each specification before starting on its implementation.
This order makes the spec likely to express desired proper-
ties rather than a particular mechanism. Writing the spec
afterwards might port implementation bugs to the spec.
Idiomatic specification. To ensure trustworthy specs, we
aim to keep them small and simple, making bugs less
likely and easier to spot. We accomplish this by speci-
fying only the feature subset that our system needs, and

by ensuring that the implementation cannot trigger other
features; e.g., our verifier will not permit any assembly
instructions not in the hardware spec. This is crucial for
devices; e.g., the TPM’s documentation runs to hundreds
of pages, but we need only a fraction of its functionality.
Hence, our TPM spec is only 296 source lines of code
(SLOC).
Spec reviews. We had two or more team members de-
velop each spec, and another review their work indepen-
dently. This caught several bugs before writing any code.

Despite our techniques, specs may still contain bugs.
However, we expect them to contain significantly fewer
bugs than implementations. First, our specs are smaller
(§8.1). Second, our specs are written in a more abstract,
declarative fashion than implementation code, making
spec bugs both less likely to occur and easier to find when
they do occur. For example, one line in our Notary spec
(§5.1) says that a number representing a counter is incre-
mented. The code implementing that addition, in contrast,
involves hundreds of lines of code: it implements the
unbounded-precision number using an array of machine
words, so addition must handle carries and overflow.

Overall, our experience (§7) suggests specs are indeed
more trustworthy than code.

3.4 Producing verifiable assembly language

To enable rapid, large-scale software development while
still verifying code at a low level, we take a two-layer ver-
ification approach (Figure 1): we write our specs and im-
plementation in the high-level Dafny language, but we re-
verify the code after compiling to assembly language.

We replaced the existing Dafny compiler targeting
.NET and Windows with two new components, a trusted
spec translator and a new untrusted compiler called
DafnyCC. The trusted spec translator converts a tiny sub-
set of Dafny into BoogieX86. This subset includes just
those features useful in writing specs: e.g., functions, type
definitions, and sequences, but not arrays.

Our untrusted DafnyCC compiler, in contrast, con-
sumes a large subset of the Dafny language. It translates
both the code and the proofs written in Dafny into Boo-
gieX86 assembly that Boogie can automatically verify. It
also automatically inserts low-level proofs that the stack
is used safely (§6.3), that OS invariants are maintained
(§6.4), etc. Because all of the code emitted by DafnyCC
is verified by Boogie, none of its complexity is trusted.
Thus, we can add arbitrarily complex features and opti-
mizations without hurting security. Indeed, Boogie caught
several bugs made during compilation (§7.7).

3.5 Rapid verification

A key goal of Ironclad is to reduce the verification bur-
den for developers, so we use the following techniques to
support rapid verification.
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Preliminary verification. Although ultimately we must
verify code at the assembly level, it is useful to perform a
fast, preliminary verification at the Dafny level. This lets
the developer quickly discover bugs and missing proof an-
notations. The verification is particularly rapid because
Dafny includes a plugin for the Visual Studio interactive
development environment that verifies code incrementally
as the developer types, emitting error messages and mark-
ing the offending code with squiggly underlines.
Modular verification. We added support to Dafny for
modular verification, allowing one file to import another
file’s interfaces without reverifying that code.
Shared verification. Our IronBuild tool shares verifica-
tion results among developers via a cloud store. Since
each developer verifies code before checking it in, when-
ever another developer checks out code, verification will
succeed immediately based on cached results. IronBuild
precisely tracks dependencies by hash to ensure fidelity.

3.6 Verifying relational properties

For Ironclad Apps, we prove properties beyond functional
correctness, e.g., that the apps do not leak secrets such
as keys. Although standard Floyd-Hoare tools like Boo-
gie and Dafny focus on functional correctness, we ob-
served that we could repurpose a Boogie-based experi-
mental tool, SymDiff [37], to prove noninterference prop-
erties. We combine these proofs with our functional cor-
rectness proofs to reason about the system’s security (§4).

Suppose that variable S represents a secret inside the
program and I represents a public input to the program.
The statement O := (S+S)+(I+I) satisfies a functional
correctness specification even(O). However, in doing
so, it leaks information about the secret S .

The statement O := (S−S)+(I+I), by contrast, sat-
isfies even(O) yet leaks no information about S. Intu-
itively, the value stored in O depends on I but is inde-
pendent of S. The concept of noninterference [24, 57, 61]
formalizes this intuition by reasoning about multiple ex-
ecutions of a program, and comparing the outputs to see
which values they depend on. Suppose that we pass the
same public input I to all the executions, but vary the se-
cret S between the executions. If all the executions pro-
duce the same output O regardless of S, then O is indepen-
dent of S, and the program leaks nothing about S.

Mathematically, noninterference means that for all pos-
sible pairs of executions, if the public inputs I are equal
but the secrets S may be different, then the outputs O are
equal. (Some definitions also require that termination is
independent of secrets [57], while others do not [61]; for
simplicity, we use the latter.) More formally, if we call the
two executions in each pair L and R, for left and right, then
noninterference means ∀SL,SR . IL = IR =⇒ OL = OR.
For instance, O := (S−S)+ (I+I) satisfies this condi-
tion, but O := (S+S)+(I+I) does not.

To allow the SymDiff tool to check noninterference, we
annotate some of our code with explicit relational annota-
tions [5], writing xL as left(x) and xR as right(x):
method Test(S, I) returns(O)

requires left(I) == right(I);
ensures left(O) == right(O);
ensures even(O);

{ O := (S - S) + (I + I); }

The relational precondition left(I) == right(I)
means SymDiff must check that IL = IR wher-
ever Test is called, and the relational postcondition
left(O) == right(O) means SymDiff must check
that this method ensures IL = IR =⇒ OL = OR.

However, for most of our code, SymDiff leverages our
existing functional correctness annotations and does not
need relational annotations. For example, SymDiff needs
only the functional postcondition in this code:
method ComputeIpChecksum(I) returns(O)

ensures O == IpChecksum(I);

to infer that if IL = IR, then IpChecksum(IL) =
IpChecksum(IR), so OL = OR.

4 Proving Ironclad Security Properties
This section describes how we combine the previous sec-
tion’s ideas of functional correctness, like even(O), and
noninterference, like IL = IR =⇒ OL = OR, to prove the
security of our Ironclad Apps. It describes the architec-
ture, theorems, and proofs at a high level. In §5, we show
how they are instantiated for each app, and in §6 we give
details about the key lemmas we prove about our system
to support these high-level results.

4.1 Declassification and the Ironclad architecture

Pure noninterference establishes that a program’s output
values are completely independent of the program’s se-
crets, but this requirement is too strong for most real-
world systems. In practice, programs deliberately allow
limited influence of the secrets on the output, such as us-
ing a secret key to sign an output. A security policy for
such programs explicitly declassifies certain values, like a
signature, so they can be output despite being dependent
on secrets.

Figure 2 shows the overall structure of the Ironclad sys-
tem, including an abstract declassifier that authorizes the
release of selected outputs derived from secrets. We ex-
press each app’s declassification policy as a state machine,
thereby binding the release of secret-derived data to the
high-level behavior of the abstract app specification. We
assume that the client communicates with the Ironclad
App across a network that may drop, delay, duplicate, or
mangle data. The network, however, does not have ac-
cess to the app’s secrets. The app receives some possibly-
mangled inputs I and responds by sending some outputs O
to the network, which may mangle O before passing them
to the client. While computing the outputs O, the app may
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O
WriteOutput

method ReadInput() returns(I);
ensures left(I) == right(I);

method Declassify(S, i, d) returns(o);
requires d == StateMachineOutput(S, i);
requires left(i) == right(i);
ensures left(o) == right(o);

method WriteOutput(O);
requires left(O) == right(O);

Figure 2: Abstract system structure and trusted in-
put/output/declassify specification.

appeal to the declassification policy as many times as it
wishes. Each time, it passes its secrets S, some inputs i,
and the desired declassified outputs d to the declassifier.
For verification to succeed, the desired outputs must equal
the outputs according to the abstract state machine’s pol-
icy: d = StateMachineOutput(S,i). If static verification
proves that the declassification policy is satisfied, the de-
classifier produces declassified outputs o that the app can
use as part of its outputs O.

In the real implementation, o simply equals d, so that
the declassifier is a no-op at run-time. Nevertheless,
we hide this from the verifier, because we want to re-
veal oL = oR without revealing dL = dR; in some cases
where the secrets S are in principle computable by brute-
force search on d (e.g., by factoring an RSA public key),
dL = dR might imply SL = SR, which we do not want.

4.2 Ironclad security theorems

Given the execution model described above, for each of
our apps, we first prove functional correctness as a pre-
condition for declassification:

Theorem 1 FUNCTIONAL CORRECTNESS. At each
declassification Declassify(S,i,d), the desired outputs
d satisfy the app’s functional correctness policy, ac-
cording to the app’s abstract state machine: d =
StateMachineOutput(S,i).

In other words, we only declassify values that the ab-
stract state machine would have output; the state machine
clearly considers these values safe to output.

Second, we split noninterference into two parts and
prove both: noninterference along the path from the in-
puts I to the declassifier, and noninterference along the
path from the declassifier to the outputs O:

Theorem 2 INPUT NONINTERFERENCE. At each de-
classification Declassify(S,i,d), IL = IR =⇒ iL = iR.

In other words, the declassifier’s public inputs i may de-
pend on inputs from the network I, but not on secrets S.

Theorem 3 OUTPUT NONINTERFERENCE. Each time
the program outputs O, IL = IR∧oL = oR =⇒ OL = OR.
In other words, the outputs O may depend on inputs from
the network I and on any declassified values o, but not on
secrets S.

As discussed in more detail in later sections, we carried
out formal, mechanized proofs of these three theorems us-
ing the Boogie and SymDiff tools for each Ironclad App.

These theorems imply remote equivalence:
Corollary 1 REMOTE EQUIVALENCE. To a remote
party, the outputs received directly from the Ironclad App
are equal to the outputs generated by the specified ab-
stract state machine over some untrusted network, where
the state machine has access to the trusted platform’s
secrets, but the untrusted network does not. (Specifi-
cally, if the Ironclad App generates some outputs OL and
the untrusted network generates some outputs OR, then
OL = OR.)
Proof Sketch: We prove this by constructing an alterna-
tive, abstract counterpart to the Ironclad App. Label the
real Ironclad App L and the counterpart R. The counter-
part R consists of two components: the specified abstract
state machine, which can read the trusted platform’s se-
crets S, and an untrusted network, which cannot. We
construct R by using the actual Ironclad App code as the
untrusted network, with two changes. First, in the un-
trusted network, we replace the real secrets S with an
arbitrary value S’, modeling the network’s lack of ac-
cess to the real secrets S. Second, we replace R’s ordi-
nary declassifier with the abstract state machine produc-
ing oR = StateMachineOutput(S,iR), modeling the ab-
stract state machine’s access to the real secrets S. We pass
the same input to both the real Ironclad App L and to R,
so that IL = IR. By INPUT NONINTERFERENCE, the in-
puts to the declassifier are the same: iL = iR. The real
declassifier simply returns oL = dL, and by FUNCTIONAL
CORRECTNESS, the real Ironclad App produces the out-
puts dL = StateMachineOutput(S,iL). Since iL = iR
and we pass the same secrets S to both L and R, we
conclude that oL = dL = StateMachineOutput(S,iL) =
StateMachineOutput(S,iR) = oR. Then by OUTPUT
NONINTERFERENCE, both L and R generate the same out-
puts: OL = OR.

This shows that the Ironclad App’s output is the same
as that of the abstract state machine and an untrusted net-
work. Thus, the output a remote party sees, which is pro-
duced by the Ironclad App and an actual untrusted net-
work, is the same as that of the abstract state machine and
an untrusted network composed of the actual and chosen
untrusted networks.

4.3 Limitations of this model

Since we have not formally proven liveness properties like
termination, an observer could in principle learn informa-
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datatype NotaryState = NotaryState_c(
keys:RSAKeyPair, cntr:nat);

predicate NotarizeOpCorrect(
in_st:NotaryState, out_st:NotaryState,
in_msg:seq<int>, out_stmt:seq<int>,
out_sig:seq<int>)

{
ByteSeq(in_msg)
&& out_st.keys == in_st.keys
&& out_st.cntr == in_st.cntr + 1
&& out_stmt==[OP_COUNTER_ADV]

+ rfc4251_encode(out_st.cntr) + in_msg
&& out_sig==RSASign(in_st.keys, out_stmt)
}

Figure 3: Part of the Notary Spec. Simplified for brevity and
clarity, this is a predicate the implementation must satisfy before
being allowed to declassify out sig, which otherwise cannot
be output because it depends on secret data.

tion about the secrets from whether an output was gener-
ated for a given input. Also, we have not formally proved
timing properties, so an observer could also learn informa-
tion from a timing channel. To eliminate the possibility of
such timing-based information leakages, in the future we
would like to prove that the time of the outputs is inde-
pendent of secrets. The literature contains many possible
approaches [10, 15, 26]; for example, we might prove an
upper bound on the time taken to produce an output, and
delay each output until the upper bound is reached.

5 Ironclad Applications
To make the guarantees of remote equivalence concrete,
we describe the four apps we built. The proof for each
app, in turn, builds on lemmas about lower-level libraries,
drivers, and OS, which we discuss in §6.

Each app compiles to a standalone system image that
communicates with other machines via UDP. Neverthe-
less, each is a useful complete application that would
merit at least one dedicated machine in a data center. In
the future, hardware support for fine-grained secure exe-
cution environments [42] may offer a simple path towards
multiplexing Ironclad Apps.

5.1 Notary

Our Notary app securely assigns logical timestamps to
documents so they can be conclusively ordered. This is
useful, e.g., for establishing patent priority [28] or con-
ducting online auctions [62]. Typically, users of such a
service must trust that some machine is executing correct
software, or that at least k of n machines are [12]. Our
Ironclad Notary app requires no such assumption.

Lemma 1 NOTARY REMOTE EQUIVALENCE. The No-
tary app is remotely equivalent to a state machine with
the following state:
• 〈PublicKey,PrivateKey〉, computed using the RSA

key generation algorithm from the first consecutive
sequence of random bytes read from the TPM;

• a TPM, whose PCR 19 has been extended with the
public part of that key pair; and

• a Counter, initialized to 0;
and the following transitions:
• Given input 〈connect,Nonce〉, it changes the TPM

state by obtaining a quote Quote over PCRs 17–
19 and external nonce Nonce. It then outputs
〈PublicKey,Quote〉.

• Given input 〈notarize,Hash〉, it increments
Counter and returns SigPrivateKey(OP-CTR-ADV ‖
RFC4251Encode(Counter) ‖ Hash).

Figure 3 shows part of the corresponding Dafny spec.
Proving this lemma required proofs of the following.

(1) Input non-interference: the nonce and message the app
passes the declassifier are based solely on public data. (2)
Functional correctness of connect: the app derives the
key from randomness correctly, and the TPM quote the
app obtains comes from the TPM when its PCRs are in the
required state. (3) Functional correctness of notarize:
the app increments the counter and computes the signature
correctly. (4) Output non-interference: Writes to unpro-
tected memory depend only on public data and the com-
puted state machine outputs.

Proving remote-equivalence lemmas for the other apps,
which we describe next, required a similar approach.

5.2 TrInc

Our trusted incrementer app, based on TrInc [40], gener-
alizes Notary. It maintains per-user counters, so each user
can ensure there are no gaps between consecutive values.
It is a versatile tool in distributed systems, useful e.g. for
tamper-resistant audit logs, Byzantine-fault-tolerant repli-
cated state machines, and verifying that an untrusted file
server behaves correctly.

Lemma 2 TRINC REMOTE EQUIVALENCE. The TrInc
app is remotely equivalent to a state machine like No-
tary’s except that it has multiple counters, each a tuple
〈Ki,vi〉, and a meta-counter initially set to 0. In place of
the notarize transition it has:
• Given input 〈create,K〉, it sets i := meta counter,

increments meta counter, and sets 〈Ki,vi〉= 〈K,0〉.
• Given input 〈advance, i,vnew,Msg,UserSig〉,

let vold = vi in counter tuple i. If vold ≤ vnew
and VerifySigKi

(vnew ‖ Msg,UserSig) suc-
ceeds, it sets vi := vnew and outputs
SigPrivateKey(OP-CTR-ADV ‖ encode(i) ‖
encode(vold) ‖ encode(vnew) ‖Msg).

5.3 Password hasher

Our next app is a password-hashing appliance that renders
harmless the loss of a password database. Today, attackers
frequently steal such databases and mount offline attacks.
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Even when a database is properly hashed and salted, low-
entropy passwords make it vulnerable: one study recov-
ered 47–79% of passwords from low-value services, and
44% of passwords from a high-value service [41].

Lemma 3 PASSHASH REMOTE EQUIVALENCE. The
PassHash app is remotely equivalent to the following
state machine. Its state consists of a byte string Secret,
initialized to the first 32 random bytes read from the
TPM. Given input 〈hash,Salt,Password〉, it outputs
SHA256(Secret ‖ Salt ‖ Password).

Meeting this spec ensures the hashes are useless to an
offline attacker: Without the secret, a brute-force guessing
attack on even the low-entropy passwords is infeasible.

5.4 Differential-privacy service

As an example of a larger app with a more abstract spec,
we built an app that collects sensitive data from contribu-
tors and allows analysts to study the aggregate database.
It guarantees each contributor differential privacy [19]:
the answers provided to the analyst are virtually indistin-
guishable from those that would have been provided if the
contributor’s data were omitted. Machine-checked proofs
are especially valuable here; prior work [46] showed that
implementations are prone to devastating flaws.

Our app satisfies Dwork’s formal definition: An algo-
rithm A is differentially private with privacy ε if, for any
set of answers S and any pair of databases D1 and D2 that
differ by a single row, P[A(D1) ∈ S ]≤ λ ·P[A(D2) ∈ S ],
where we use the privacy parameter λ = eε [23].
Privacy budget. Multiple queries with small privacy pa-
rameters are equivalent to a single query with the product
of the parameters. Hence we use a privacy budget [20].
Beginning with the budget b = λ guaranteed to contribu-
tors, each query Q with parameter λQ divides the budget
b′ := b/λQ; a query with λQ > b is rejected.
Noise computation. We follow the model of Dwork et
al. [20]. We first calculate ∆, the sensitivity of the query,
as the most the query result can change if a single database
row changes. The analyst receives the sum of the true an-
swer and a random noise value drawn from a distribution
parameterized by ∆.

Dwork et al.’s original algorithm uses noise from a
Laplace distribution [20]. Computing this distribution in-
volves computing a natural logarithm, so it cannot be done
precisely on real hardware. Thus, practical implementa-
tions simulate this real-valued distribution with approxi-
mate floating point values. Unfortunately, Mironov [46]
devised a devastating attack that exploits information re-
vealed by error in low-order bits to reveal the entire
database, and showed that all five of the main differential-
privacy implementations were vulnerable.

To avoid this gap between proof and implementation,
we instead use a noise distribution that only involves ra-
tional numbers, and thus can be sampled precisely using

predicate DBsSimilar(d1:seq<Row>,d2:seq<Row>)
|d1| == |d2| &&
exists diff_row ::

forall i :: 0 <= i < |d1| && i != diff_row
==> d1[i] == d2[i]

predicate SensitivitySatisfied(prog:seq<Op>,
min:int, max:int, delta:int)

forall d1:seq<Row>, d2:seq<Row> ::
Valid(d1)&&Valid(d2)&&DBsSimilar(d1, d2)==>
-delta <= MapperSum(d1, prog, min, max) -

MapperSum(d2, prog, min, max)
<= delta

Figure 4: Summing Reducer Sensitivity. Our differential-
privacy app is verified to satisfy a predicate like this, relating
reducer output sensitivity to the ∆ used in noise generation.

the x86 instruction set. In our specification, we model
these rational numbers with real-valued variables, making
the spec clearer and more compact. We then prove that
our 32-bit-integer-based implementation meets this spec.

Lemma 4 DIFFPRIV REMOTE EQUIVALENCE. The
DiffPriv app is remotely equivalent to a state machine
with the following state:
• key pair and TPM initialized as in Notary;
• remaining budget b, a real number; and
• a sequence of rows, each consisting of a duplicate-

detection nonce and a list of integer column values;
and with transitions that connect to the app, initialize the
database, add a row, and perform a query.

We also prove a higher-level property about this app:
Lemma 5 SENSITIVITY. The value ∆ used as the sensi-
tivity parameter in the spec’s noise computation formula
is the actual sensitivity of the query result. That is, if we
define A(D) as the answer the app computes when the
database is D, then for any two databases D1 and D2,
|A(D1)−A(D2)| ≤ ∆.

To make this verifiable, we use Airavat-style
queries [56]. That is, each query is a mapper, which
transforms a row into a single value, and a reducer,
which aggregates the resulting set; only the latter affects
sensitivity. The analyst can provide an arbitrary mapper;
we provide, and prove sensitivity properties for, the
single reducer sum. It takes RowMin and RowMax
parameters, clipping each mapper output value to this
range. Figure 4 shows the property we verified: that the
sensitivity of sum is ∆ = RowMax−RowMin regardless
of its mapper-provided inputs.

6 Full-System Verification
We have mechanically verified the high-level theorems
described in §4. Although the mechanical verification
uses automated theorem proving, the code must contain
manual annotations, such as loop invariants, precondi-
tions, and postconditions (§3.2). One can think of these
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OS: late launch, IOMMU, segmentation, page tables, GC

Core MathTPM DriverNetwork Driver
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App (PassHash, Notary, TrInc, or DiffPriv)

Figure 5: System Overview.

annotations, spread throughout the code, as lemmas that
build to the final high-level theorems.

To convey the work necessary to complete the verifi-
cation, this section gives a sampling of the key lemmas
we proved along the way. For clarity and conciseness, we
state each lemma as brief English text; the real mechan-
ical “lemmas” are the annotations in the code itself. The
lemmas described in this section are not, on their own,
sufficient for the proof, since they are only a sampling.
Nevertheless, a failure in any of the lemmas below would
cause the high-level theorems to fail; we would not be able
to establish the overall correctness of an Ironclad App if,
for example, the cryptographic library or the garbage col-
lector were incorrect.

6.1 Memory, devices, and information flow

Lemma 6 IOMMU CONFIGURATION. The Ironclad
Apps configure the IOMMU to divide memory into device-
accessible and app-private memory; non-device opera-
tions access only app-private memory.

Our assembly language instruction specifications check
that non-device memory operations only access app-
private memory that has been protected by the hardware’s
device exclusion vector, a simple IOMMU.

Commodity CPUs from AMD [1] and Intel [32] pro-
vide a dynamic root-of-trust for measurement (DRTM)
feature, a.k.a. late launch [53]. It resets the CPU to
a known state, stores a measurement (hash) of the in-
memory code pointed to by the instruction’s argument,
and jumps to that code. After a late launch, the hardware
provides the program control of the CPU and 64 KiB of
protected memory. To use more than 64 KiB, it must first
extend the IOMMU’s protections, using our specification
for IOMMU configuration. Only then can the program
satisfy the preconditions for assembly language instruc-
tions accessing memory outside the 64-KiB region.

Lemma 7 DEVICES SEE NO SECRETS. Only non-secret
data is passed to devices.

Our assembly language instruction specifications re-
quire that stores to device-accessible memory, i.e., mem-

ory that the IOMMU allows devices to see, can only
store non-secret data O. In §3.6’s terminology, non-secret
means that OL = OR. More specifically, we require that
the left and right executions generate the same sequence
of device stores: the same values to the same addresses,
modulo timing and liveness.

To prove OL = OR, we annotate our implementation’s
input and output paths with relational annotations. These
input and output paths include the application event loops
and the networking stack. For example, the Ethernet, IP,
and UDP layers maintain relational properties on packets.

Lemma 8 KEY IN TPM. Apps correctly extend a public
key into the TPM’s PCR 19. The private key is generated
using TPM randomness and never leaves the platform.

Lemma 9 ATTESTATION. Apps generate a correct TPM
attestation after extending their public key into a PCR.

Corollary 2 SECURE CHANNEL. If a remote client re-
ceives a public key and an attestation, and the attested
PCR code values (PCRs 17, 18) match those of an Iron-
clad App, and the attested PCR data values (PCR 19)
match the public key, and a certificate shows the attes-
tation is from a legitimate hardware TPM manufacturer,
then the client can use the public key to establish a secure
channel directly to the Ironclad App.

6.2 Cryptographic libraries

Lemma 10 HASHING. Our SHA-{1,256} conforms to
FIPS 180-4 [50], and our HMAC to FIPS 198-1 [49].

Lemma 11 RSA OPERATIONS. RSA keys are gener-
ated using consecutive randomness from the TPM (not se-
lectively sampled), and pass the Miller-Rabin primeness
test [45, 54]. Our implementations of RSA encrypt, de-
crypt, sign, and verify, including padding, produce byte
arrays that conform to PKCS 1.5 and RSA standards [33].

For basic cryptographic primitives such as hash func-
tions, functional correctness is the best we can hope to
verify. For instance, there is no known way to prove that
SHA-256 is collision-resistant.

The RSA spec, derived from RFC 2313 [33], defines
encryption and signature operations as modular exponen-
tiation on keys made of Dafny’s ideal integers. The key-
generation spec requires that the key be made from two
random primes.

To implement these crypto primitives, we built a
BigNum library. It implements arbitrary-precision inte-
gers using arrays of 32-bit words, providing operations
like division and modulo needed for RSA. BigRat extends
it to rationals, needed for differential privacy.

Lemma 12 BIGNUM/BIGRAT CORRECTNESS. Each
BigNum/BigRat operation produces a value representing
the correct infinite-precision integer or real number.
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6.3 DafnyCC-generated code

Since the DafnyCC compiler sits outside our TCB, we
have to verify the assembly language code it generates.
This verification rests on several invariants maintained by
all DafnyCC-generated code:

Lemma 13 TYPE SAFETY. The contents of every value
and heap object faithfully represent the expected contents
according to Dafny’s type system, so that operations on
these values never cause run-time type errors.

Lemma 14 ARRAY BOUNDS SAFETY. All array opera-
tions use an index within the bounds of the array.

Lemma 15 TRANSITIVE STACK SAFETY. When calling
a method, enough stack space remains for all stack oper-
ations in that method and those it in turn calls.

Dafny is a type-safe language, but we cannot simply as-
sume that DafnyCC preserves Dafny’s type safety. Thus,
we must prove type safety at the assembly language level
by establishing typing invariants on all data structures that
represent Dafny values. For example, all pointers in data
structures point only to values of the expected type, and
arbitrary integers cannot be used as pointers. These typing
invariants are maintained throughout the Ironclad assem-
bly language code (they appear in nearly all loop invari-
ants, preconditions, and postconditions). In contrast to the
original Verve OS [65], Ironclad does not rely on an exter-
nal typed assembly language checker to check compiled
code; this gives Ironclad the advantage of using a single
verification process for both hand-written assembly lan-
guage code and compiled code, ensuring that there are no
mismatches in the verification process.

Lemma 16 HIGH-LEVEL PROPERTY PRESERVATION.
Every method proves that output stack state and registers
satisfy the high-level Dafny postconditions given the high-
level Dafny preconditions.

DafnyCC maintains all Dafny-level annotations, in-
cluding preconditions, postconditions, and loop invari-
ants. Furthermore, it connects these high-level annota-
tions to low-level stack and register values, so that the op-
erations on stack and register values ultimately satisfy the
Dafny program’s high-level correctness theorems.

6.4 Maintaining OS internal invariants

Although Ironclad builds on the original Verve OS [65],
we made many modifications to the Verve code to ac-
commodate DafnyCC, the late launch process and the
IOMMU (§6.1), the TPM (§2.3), segmentation, and other
aspects of Ironclad. Thus, we had to prove that these mod-
ifications did not introduce any bugs into the Verve code.

Lemma 17 OPERATING SYSTEM INVARIANTS. All op-
erating system data structure invariants are maintained.

Lemma 18 GARBAGE COLLECTION CORRECTNESS.
The memory manager’s representation of Dafny objects
correctly represents the high-level Dafny semantics.

We modified the original Verve copying garbage col-
lector’s object representation to accommodate DafnyCC-
generated code. This involved reproving the GC correct-
ness lemma: that the GC always maintains correct object
data, and never leaves dangling pointers, even as it moves
objects around in memory. Our modification initially con-
tained a design flaw in the object header word: we acci-
dentally used the same bit pattern to represent two dif-
ferent object states, which would have caused severe and
difficult-to-debug memory corruption. Verification found
the error in seconds, before we ran the new GC code.

7 Experiences and Lessons Learned
In this section, we describe our experiences using modern
verification tools in a large-scale systems project, and the
solutions we devised to the problems we encountered.

7.1 Verification automation varies by theory

Automated theorem provers like Z3 support a variety of
theories: arithmetic, functions, arrays, etc. We found
that Z3 was generally fast, reliable, and completely au-
tomated at reasoning about addition, subtraction, mul-
tiplication/division/mod by small constants, comparison,
function declarations, non-recursive function definitions,
sequence/array subscripting, and sequence/array updates.
Z3 sometimes needed hints to verify sequence concatena-
tion, forall/exists, and recursive function definitions, and
to maintain array state across method invocations.

Unfortunately, we found Z3’s theory of nonlinear arith-
metic to be slow and unstable; small code changes often
caused unpredictable verification failures (§7.2).

7.2 Verification needs some manual control

As discussed in §1, verification projects often avoid auto-
mated tools for fear that such tools will be unstable and/or
too slow to scale to large, complex systems. Indeed, we
encountered verification instability for large formulas and
nonlinear arithmetic. Nevertheless, we were able to ad-
dress these issues by using modular verification (§3.5),
which reduced the size of components to be verified, and
two additional solutions:
Opaque functions. Z3 may unwrap function definitions
too aggressively, each time obtaining a new fact, often
leading to timeouts for large code. To alleviate this, we
modified Dafny so a programmer can designate a function
as opaque. This tells the verifier to ignore the body, except
in places where the programmer explicitly indicates.
Nonlinear math library. Statements about nonlinear in-
teger arithmetic, such as ∀x,y,z : x(y+ z) = xy+ xz, are
not, in general, decidable [17]. So, Z3 includes heuristics
for reasoning about them. Unfortunately, if a complicated
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method includes a nonlinear expression, Z3 has many op-
tions for applicable heuristics, leading to instability.

Thus, we disable Z3’s nonlinear heuristics, except on
a few files where we prove simple, fundamental lem-
mas, such as (x > 0∧ y > 0)⇒ xy > 0. We used those
fundamental lemmas to prove a library of math lem-
mas, including commutativity, associativity, distributivity,
GCDs, rounding, exponentiation, and powers of two.

7.3 Existing tools make simple specs difficult

To enhance the security of Ironclad Apps, we aim to min-
imize our TCB, particularly the specifications.

Unfortunately, Dafny’s verifier insists on proving that,
whenever one function invokes another, the caller meets
the callee’s pre-conditions. So, the natural spec for SHA,
function SHA(bits:seq<int>):seq<int>

requires |bits|<power2(64);
{ .... }
function SHA_B(bytes:seq<int>):seq<int>
{ SHA(Bytes2Bits(bytes)) }

has a problem: the call from SHA B to SHA may pass a bit
sequence whose length is ≥ 264.

We could fix this by adding
requires |bytes|<power2(61);

to SHA_B, but this is insufficient because the verifier
needs help to deduce that 261 bytes is 264 bits. So we
would also have to embed a mathematical proof of this in
the body of SHA_B, leading to a bloated spec.
Automatic requirements. Our solution is to add auto-
matic requirement propagation to Dafny: A spec writer
can designate a function as autoReq, telling Dafny to
automatically add pre-conditions allowing it to satisfy the
requirements of its callees. For instance, if we do this to
SHA_B, Dafny gives it the additional pre-condition:
requires |Bytes2Bits(bytes)|<power2(64);

This makes the spec verifiable despite its brevity.
Premium functions. Our emphasis on spec simplicity
can make the implementor’s job difficult. First, using
autoReq means that the implementor must satisfy a pile
of ugly, implicit, machine-generated pre-conditions ev-
erywhere a spec function is mentioned. Second, the spec
typically contains few useful post-conditions because they
would bloat the spec. For instance, SHA does not state that
its output is a sequence of eight 32-bit words.

We thus introduce a new discipline of using premium
functions in the implementation. A premium function is
a variant of a spec function optimized for implementation
rather than readability. More concretely, it has simpler-to-
satisfy pre-conditions and/or more useful post-conditions.
For instance, instead of the automatically-generated pre-
conditions, we use the tidy pre-conditions we wanted to
write in the spec but didn’t because we didn’t want to
prove them sufficient. For instance, we could use

requires |bits|<power2(61);
ensures IsWordSeqOfLen(hash, 8);

as the signature for the premium version of SHA_B.

7.4 Systems often use bounded integer types

Dafny only supports integer types int and nat, both
representing unbounded-size values. However, nearly all
of our code concerns bounded-size integers such as bits,
bytes, and 32-bit words. This led to many more annota-
tions and proofs than we would have liked. We have pro-
vided this feedback to Dafny’s author, who consequently
plans to add refinement types.

7.5 Libraries should start with generality

Conventional software development wisdom is to start
with simple, specific code and generalize only as needed,
to avoid writing code paths which are not exercised or
tested. We found this advice invalid in the context of ver-
ification: instead, it is often easier to write, prove, and
use a more-general statement than the specific subset we
actually need. For example, rather than reason about the
behavior of shifting a 32-bit integer by k bits, it is better
to reason about shifting n-bit integers k bits. Actual code
may be limited to n = 32, but the predicates and lemmas
are easier to prove in general terms.

7.6 Spec reviews are productive

Independent spec reviews (§3.3) caught multiple human
mistakes; for instance, we caught three bugs in the seg-
mentation spec that would have prevented our code from
working the first time. Similarly, we found two bugs in
the SHA-1 spec; these were easily detected, since the spec
was written to closely match the text of the FIPS spec [50].

To our knowledge, only three mistakes survived the re-
view process, and all three were liveness, not security,
bugs in the TPM spec: Code written against the original
spec would, under certain conditions, wait forever for an
extra reply byte which the TPM would never send.

Also, our experience was consistent with prior obser-
vations that the act of formal specification, even before
verification, clarifies thinking [38]. This discipline shone
especially in specifying hardware interfaces, such as x86
segmentation behavior. Rather than probing the hard-
ware’s behavior with a code-test-debug cycle, specifica-
tion required that we carefully extract and codify the rel-
evant bits of Intel’s Byzantine documentation. This led
to a gratifying development experience in which our code
worked correctly the first time we ran it.

7.7 High-level tools have bugs

One of our central tenets is that verification should be per-
formed on the low-level code that will actually run, not the
high-level code it is compiled from. This is meant to re-
duce bugs by removing the compiler from the TCB. We
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found that this is not just a theoretical concern; we dis-
covered actual bugs that this approach eliminates.

For example, when testing our code, we found a bug in
the Dafny-to-C# compiler that suppressed calls to meth-
ods with only ghost return values, even if those methods
had side effects. Also, we encountered a complex bug in
the translation of while loops that caused the high-level
Dafny verifier to report incorrect code as correct. Finally,
verifying at the assembly level caught multiple bugs in
DafnyCC, from errors in its variable analysis and register
allocator to its handling of calculational proofs.

8 Evaluation
We claim that it is feasible to engineer apps fully verified
to adhere to a security-sensitive specification. We evalu-
ate this claim by measuring the artifacts we built and the
engineering effort of building them.

8.1 System size

Table 1 breaks down the components of the system. It
shows the size of the various specs, high-level implemen-
tation code, and proof statements needed to convince the
verifier that the code meets the specs. It also shows the
amount of verifiable assembly code, most generated by
DafnyCC but some written by hand. Overall, Ironclad
consists of 3,546 lines of spec, plus 7K lines of implemen-
tation that compile to 42K assembly instructions. Veri-
fying the system takes 3 hours for functional-correctness
properties and an additional 21 hours for relational prop-
erties.

Most importantly, our specs are small, making manual
spec review feasible. Altogether, all four apps have 3,546
SLOC of spec. The biggest spec components are hard-
ware and crypto. Both these components are of general
use, so we expect spec size to grow slowly as we add ad-
ditional apps.

Our ratio of implementation to spec is 2:1, lower than
we expected. One cause for this low ratio is that much of
the spec is for hardware, where the measured implemen-
tation code is just drivers and the main implementation
work was done by the hardware manufacturers. Another
cause is that we have done little performance optimiza-
tion, which typically increases this ratio.

Our ratio of proof annotation to implementation, 4.8:1,
compares favorably to seL4’s ∼20:1. We attribute this to
our use of automated verification to reduce the burden on
developers. Note also that the ratio varies across compo-
nents. For instance, the core system and math libraries re-
quired many proofs to establish basic facts (§7.2); thanks
to this work, higher-level components obtained lower ra-
tios. Since these libraries are reusable, we expect the ratio
to go down further as more apps reuse them.

Figure 6 shows line counts for our tools. The ones in
our TCB have 15,302 SLOC. This is much less than the

Spec Impl Proof Asm Boogie SymDiff
Component (SLOC) (LOC) time (s) time (s)
Specific apps:
PassHash 32 81 193 447 158 6434
TrInc 78 232 653 1292 438 9938
Notary 38 140 307 663 365 14717
DiffPriv 444 586 1613 3523 891 21822
Ironclad core:
App common 43 64 119 289 210 0
SHA-1,-256 420 574 3089 6049 698 0
RSA 492 726 4139 3377 1405 9861
BigNum 0 1606 8746 7664 2164 0
UDP/IP stack 0 135 158 968 227 4618
Seqs and ints 177 312 4669 1873 791 888
Datatypes 0 0 0 5865 1827 0
Core math 72 206 3026 476 571 0
Network card 0 336 429 2126 199 3547
TPM 296 310 531 2281 417 0
Other HW 90 324 671 2569 153 3248
Modified Verve:
CPU/memory 900 643 2131 260 67 0
I/O 464 410 1126 1432 53 1533
GC 0 286 1603 412 92 0

Total 3546 6971 33203 41566 10726 76606

Table 1: System Line Counts and Verification Times. Asm
LOC includes both compiled Dafny and hand-written assembly.
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Figure 6: Tool Line Counts.

32,419 SLOC in the original Dafny-to-C# compiler, let
alone the code for the C# compiler. Our DafnyCC tool is
4,292 SLOC and depends on Dafny as well, but as dis-
cussed earlier (§3.4), it is not in the TCB.

8.2 Developer effort

Previous work based on interactive proof assistants
showed that the costs can be quite high [48]. In con-
trast, our experience suggests that automated provers re-
duce the burden to a potentially tolerable level. Despite
learning and creating new tools, as well as several major
code refactorings, we constructed the entire Ironclad sys-
tem with under three person-years of effort.

8.3 Performance

Finally, although performance was not one of our goals,
we evaluate the performance of our apps to demonstrate
how much more work lies ahead in optimization. For
these experiments, we use as our server an HP Compaq
6005 Pro PC with a 3-GHz AMD Phenom II X3 CPU,
4 GB of RAM, and a Broadcom NetXtreme Gigabit Eth-
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Operation Dominant step Ironclad Unverified Slowdown
Notary notarize Compute RSA signature 934 ms ±0 ms 8.88 ms ±0.68 ms 105
TrInc create Compute reciprocal of RSA modulus 4.96 ms ±0.03 ms 866 µs ±507 µs 5.72
TrInc advance Compute RSA signature 1.01 s ±0.00 s 12.1 ms ±0.2 ms 83.6
PassHash hash Compute SHA-256 hash 276 µs ±10 µs 159 µs ±3 µs 1.73
DiffPriv initialize db None, just network overhead 168 µs ±2 µs 155 µs ±3 µs 1.08
DiffPriv add row Decrypt RSA-encrypted row 944 ms ±17 ms 8.85 ms ±0.06 ms 107
DiffPriv query Compute noise with BigInts 126 ms ±19 ms 668 µs ±36 µs 189

Table 3: App benchmarks. Latency of different request types, as seen by a client on the same network switch, for Ironclad Apps
and unverified variants written in C#. Ranges shown are 95% confidence intervals for the mean.

Op Param Ironclad OpenSSL C#/.NET
TPM GetRandom 256b 39 µs/B ∗– ∗–
RSA KeyGen 1024b 39.0 s ∗12 ms ∗181 ms
RSA Public 1024b 35.7 ms 204 µs 65 µs
RSA Private 1024b 858 ms 4.03 ms 1.40 ms
SHA-256 256B 26 ns/B 13 ns/B 24 ns/B
SHA-256 8192B 13 ns/B 10 ns/B 7.6 ns/B

Table 2: Crypto microbenchmarks. ∗Only Ironclad uses the
TPM for KeyGen.

ernet NIC. As our client, we use a Dell Precision T7610,
with a 6-core 2.6-GHz Xeon E5-2630 CPU, 32 GB of
RAM, and an Intel 82579LM Gigabit Ethernet NIC. The
two are connected to the same gigabit switch.

Table 2 shows the latency and bandwidth of various
low-level crypto and TPM operations; these operations
constitute the dominant cost of app initialization and/or
app operations. Table 2 also shows the corresponding
times for C#/.NET code on Windows 7 and OpenSSL on
Ubuntu. The results show that our RSA library is about
two orders of magnitude slower than unverified variants,
and our SHA-256 code approaches within 30%.

This poor performance is not fundamental to our ap-
proach. Indeed, verification provides a safety net for
aggressive optimizations. For example, we extended
DafnyCC to support directed inlining, applied this to the
code for SHA-256, then performed limited manual opti-
mization on the resulting verifiable assembly. This more
than doubled our code’s performance, bringing us within
30% of OpenSSL. Along the way, we had no fear of
violating correctness; indeed, the verifier caught several
bugs, e.g., clobbering a live register. We used the same
technique to manually create a verified assembly-level un-
rolled add function for BigIntegers. Similarly, verification
helped to correctly move our multi-precision integer li-
brary from immutable sequences to mutable arrays, mak-
ing it 1000× faster than the first version. Many optimiza-
tion opportunities remain, such as unrolled loops, inlined
procedures, and arithmetic using the Chinese remainder
theorem and Montgomery form.

Next, we show the performance of high-level opera-
tions. To compare Ironclad’s performance to unverified

servers, we wrote unverified variants of our apps in C#
using the .NET Framework. We run those apps on the
server on Windows 7.

Table 3 shows the results. We measure various opera-
tions from the client’s perspective, counting the time be-
tween sending a request and receiving the app’s reply. For
each operation, we discard the first five results and report
the mean of the remaining 100 results; we also report the
95% confidence interval for this mean. We use 1,024-bit
RSA keys, 32-byte hashes for notarize and advance,
12-byte passwords and 16-byte salts for hash, 20-byte
nonces and four-column rows for add row, and a 19-
instruction mapper for query.

The results are generally consistent with the mi-
crobenchmark results. Slowdowns are significant for op-
erations whose dominant component involves an RSA key
operation (notarize, advance, add row), and lower
but still substantial for those involving SHA-256 (hash)
and big-integer operations (create and query). The
initialize db operation, which involves no crypto-
graphic operations and essentially just involves network
communication, incurs little slowdown.

9 Limitations and Future Work
As with any verified system, our guarantees only hold if
our specs, both of hardware and apps, are correct. While
we strive to keep the specs minimal and take additional
steps to add assurance (§3.3), this is the most likely route
for errors to enter the system.

We also rely on the correctness of our verification tools,
namely our Dafny spec translator, SymDiff, Boogie, and
Z3. Unfortunately, these tools do not currently provide
proof objects that can be checked by a small verifier, so
they all reside in our TCB. Fortunately, our spec transla-
tor is tiny, and Boogie and Z3 are extensively tested and
used by dozens of projects, including in production sys-
tems. In practice, we did not encounter any soundness
bugs in these tools, unlike the untrusted, higher-level tools
we employed (§7.7).

At present, we do not model the hardware in enough
detail to prove the absence of covert or side channels
that may exist due to timing or cache effects, but prior
work [48] suggests that such verification is feasible.
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Currently, we prove the functional correctness and non-
interference of our system, but our proofs could be ex-
tended in two directions that constitute ongoing work:
proving liveness, and connecting our guarantees to even
higher-level cryptographic protocol correctness proofs.
For example, we want to explicitly reason about proba-
bility distributions to show that our use of cryptographic
primitives creates a secure channel [6, 9].

With Ironclad, we chose to directly verify all of our
code rather than employing verified sandboxing. How-
ever, our implementation supports provably correct page
table usage and can safely run .NET code, so future work
could use unverified code as a subroutine, checking its
outputs for desired properties. Indeed, type safety allows
code to safely run in kernel mode, to reduce kernel-user
mode crossings.

10 Related Work
Trusted Computing. As discussed in §1, Trusted Com-
puting has produced considerable research showing how
to identify code executing on a remote machine [53].
However, with a few exceptions, it provides little guid-
ance as to how to assess the security of that code.
Property-based attestation [58] shifts the problem of de-
ciding if the code is trustworthy from the client to a trusted
third party, while semantic attestation attests to a large
software stack—a traditional OS and managed runtime—
to show that an app is type safe [29]. The Nexus OS [60]
attests to an unverified kernel, which then provides higher-
level attestations about the apps it runs. In general, veri-
fication efforts in the Trusted Computing space have fo-
cused primarily on the TPM’s protocols [11, 16, 27, 44]
rather than on the code the TPM attests to.
Early security kernels. Issued in 1983, the DoD’s “Or-
ange Book” [18] explicitly acknowledged the limitations
of contemporary verification tools. The highest rating
(A1) required a formal specification of the system but
only an informal argument relating the code to the spec-
ification. Early efforts to attain an A1 rating met with
mixed success; the KVM/370 project [25] aimed for A1,
but, due in part to inadequacies of the languages and tools
available, settled for C2. The VAX VMM [34] did attain
an A1 rating but could not verify that their implementa-
tion satisfied the spec. Similar caution applies to other A1
OSes [22, 59].
Recent verified kernels. The seL4 project [35, 36, 48]
successfully verified a realistic microkernel for strong cor-
rectness properties. Doing so required roughly 200,000
lines of manual proof script to verify 8,700 lines of C
code using interactive theorem proving (and 22 person-
years); Ironclad’s use of automated theorem proving re-
duces this manual annotation overhead, which helped to
reduce the effort required (3 person-years). seL4 has fo-
cused mainly on kernel verification; Ironclad contains the

small Verve verified OS, but focuses more on library (e.g.
BigNum/RSA), driver (e.g. TPM), and application ver-
ification in order to provide whole-system verification.
seL4’s kernel is verified, but can still run unverified code
outside kernel mode. Ironclad currently consists entirely
of verified code, but it can also run unverified code (§9).
Both seL4 and Ironclad verify information flow.

Recent work by Dam et al. [14] verifies information-
flow security in a simple ARM separation kernel, but the
focus is on providing a strict separation of kernel usages
among different security domains. This leaves other use-
ful security properties, including functional correctness of
the OS and applications, unverified.

While seL4 and Ironclad Apps run on commodity hard-
ware, the Verisoft project [2] aimed for greater integra-
tion between hardware and software verification, building
on a custom processor. Like seL4, Verisoft required >20
person-years of effort to develop verified software.
Differential privacy. Many systems implement differen-
tial privacy, but none provide end-to-end guarantees about
their implementations’ correctness. For instance, Barthe
et al. describe Certipriv [8], a framework for mechanically
proving algorithms differentially private, but do not pro-
vide an executable implementation of these algorithms.
As a consequence, implementations have vulnerabilities;
e.g., Mironov [46] demonstrated an attack that affected
PINQ [43], Airavat [56], Fuzz [55], and GUPT [47].

11 Conclusion
By using automated tools, we have verified full-system,
low-level, end-to-end security guarantees about Ironclad
Apps. These security guarantees include non-trivial prop-
erties like differential privacy, which is notoriously dif-
ficult to get right. By writing a compiler from Dafny
to verified assembly language, we verified a large suite
of libraries and applications while keeping our tool and
specification TCB small. The resulting system, with
∼6500 lines of runnable implementation code, took ∼3
person-years to verify. Beyond small, security-critical
apps like Ironclad, verification remains challenging: as-
suming ∼2000 verified LOC per person-year, a fully ver-
ified million-LOC project would still require ∼100s of
person-years. Fortunately, the tools will only get better,
so we expect to see full-system verification scale to larger
systems and higher-level properties in the years to come.
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